“As Found” Calibration Data – Available for a Fee?

Automotive inspection, TS 16949, IATF 16949

Q: I have been an auditor of ISO/ANSI/ASQ 9001:2008 Quality management systems–Requirements since 1992 and recently began consulting hospitals who seek ISO 9001 certification.

My experience with auditing to ISO 9001 is mostly in the manufacturing sector. When I audited against ISO 9001 clause 7.6 control of monitoring and measuring equipment, I routinely included questions regarding the process for assessing the validity of previous measurement results when equipment did not conform to established limits. I found no real issues with this until lately.

Now, clients say that calibration service providers do not routinely provide “as found” data in the report that’s sent to clients/customers. I have been told that the”‘as found” data only becomes available to the client/customer for an additional charge (and it’s not cheap).

Obviously, organizations cannot comply with the ISO 9001 requirement to perform the aforementioned assessment without this data. Since this has only come to my attention recently, I am wondering about the ethics and legality of withholding specific information in the calibration report – unless an additional fee is paid.

Could you please provide some insight or justification for this business practice?

A: It is always a good idea to evaluate one’s suppliers. This requirement is in ISO 9001 clause 7.4 purchasing. The May 2010 Quality Progress Measure for Measure column, “Supplier Demand,” provides guidance on evaluating and selecting calibration providers accredited to ISO/IEC 17025-2005: General requirements for the competence of testing and calibration laboratories. In addition, the ILAC-P14:12/2010 policy document requires ISO/IEC 17025 accredited laboratories to provide measurement uncertainty data with the measurement results as of December 1, 2011.

The customer should specify their requirements in their purchasing documents for calibration. ISO/IEC 17025 has contract review requirements that accredited laboratories must meet in order to to comply with clause 4.4 of ISO/IEC 17025.

In order for the laboratory to make an out of tolerance decision, it has to measure “as found” data. Even if the laboratory does not report it, it is required to retain it per ISO/IEC 17025 clause 5.10.4.2, second paragraph:

“When a statement of compliance with a specification is made omitting the measurement results and associated uncertainties, the laboratory shall record those results and maintain them for possible future reference.”

So, for a start, it is a good idea to use ISO/IEC 17025 accredited calibration providers and specify the customer’s requirements. Some provide “as found – as left” data routinely. Others may charge because they may claim that it takes extra time. But, if a competing laboratory provides it as part of the service, the other laboratories will follow suit or lose market share.

If the ISO/IEC 17025 accredited providers have to make a compliance decision on an item being calibrated, why would they not record the data? Even if it’s not provided, they are required to retain it for future reference in case of an inquiry. Calibration providers (whether accredited or not) that do not provide “as found – as left” data should probably be avoided. One does not know if they provided a legitimate calibration or they “stickered” the calibrated item and produced a generic certificate.

Other laboratories complying with ANSI Z540-1 or ANSI Z540.3 requirements are also required to provide “as found – as left” data. Otherwise, they are not fully complying with Z540 requirements.

The September 2010 Quality Progress Measure for Measure column, “Calibration Evaluation,” discusses evaluating non-accredited calibration providers and what to look for when assessing them.

Dilip A Shah
ASQ CQE, CQA, CCT
President, E = mc3 Solutions
Chair, ASQ Measurement Quality Division (2012-2013)
Secretary and Member of the A2LA Board of Directors (2006-2014)
Medina, Ohio
www.emc3solutions.com

Related Content:

Open access articles from ASQ:

Improved Gage R&R Measurement Studies, Quality Progress

Many manufacturers are using tools like statistical process control (SPC) and design of experiments (DoE) to monitor and improve product quality and process productivity. However, if the data collected are not accurate and precise, they do not represent the true characteristics of the part or product being measured, even if organizations are using the quality improvement tools correctly. Read more.

Assessing Failure — The effect of faulty measurement on previously produced products, Quality Progress

A measuring instrument, gage or device failed recalibration, and you have been asked to determine the influence on previously produced products. Where do you start, and what do you do? Read more.

The Prediction Properties of Classical and Inverse Regression for the Simple Linear Calibration Problem, Journal of Quality Technology

In this article, the classical approach to the calibration of measurement systems is examined. This method treats the standards as the regressor and the observed values as the response when calibrating the instrument. Read more.

Explore the ASQ Quality Resourcesfor more case studies, articles, benchmarking reports, and more.
Browse articles from ASQ magazines and journals here.

ISO 9001, Control of Monitoring and Measuring Equipment

Audit, audit by exception

Q: In ANSI/ISO/ASQ Q9001-2008 Quality management systems — Requirements, clause 7.6,  there is a requirement which states: “When used in the monitoring and measurement of specified measurements, the ability of computer software to satisfy the intended application shall be confirmed.”

Do you have any guidance on how this can be established in an analytical laboratory?

A: To answer your question, I would first refer you to the note at the end of 7.6.  It reads:

“NOTE:  Confirmation of the ability of computer software to satisfy the intended application would typically include its verification and configuration management to maintain its suitability for use.”

Now, that can sound confusing to some folks. So, let me offer you some direction.  To “confirm” (verify) your software’s abilities, you need a known standard.  I’m not referring to a standard that is traceable to national standards.  I’m referring to data you know should be revealed as a failure by your software.

For example: You have samples from 10 subgroups and, you know that one sample, when analyzed, will be found to be nonconforming.  You can use a separate source to determine what the Cpk is, or you can simply identify which sample is out of tolerance and by how much.  When you use this known standard to test your analytical software, the results will tell you if it is suitable for use.

Most software is designed with some sort of pass/fail testing option.  Nonetheless, using a proven standard to verify your software brings it down to earth and more applicable to your needs.

Bud Salsbury
ASQ Senior Member, CQT, CQI

Related Content:

You, Your Job, and ISO 9001, ASQ Knowledge Center

SunPower Corporation’s ISO 9001 recertification audit was getting close. Seeking to communicate the upcoming audit to employees across the organization, senior management of the quality function asked for an article to be included in the company newsletter. The version presented here has been edited for use by any organization that might be trying to communicate the ISO 9001 message to all staff, regardless of functional responsibilities. Read More.

What’s Old Is New Again, Quality Progress

ISO 9001 revision planning is under way. Read more.

Difference Between ISO/IEC 17025 and ISO 10012

ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratoriesQ: I am updating the instrumentation section of a product fabrication specification to replace a cancelled military specification (MIL-STD 45662) that specified calibration systems requirements.  I am looking for an industry standard that provides requirements/guidance for documentation of our established schedules and procedures for all of our measuring and test equipment and measurement standards.

I am looking into ANSI/ISO/ASQ Q10012-2003: Measurement management systems — Requirements for measurement processes and measuring equipment and ISO/IEC 17025-2005: General requirements for the competence of testing and calibration laboratories, and I would like guidance on usage and application of these standards.

A: The two standards in question, ISO 10012 and ISO 17025 have different scopes.

While the scope of both documents includes language that can perhaps cause confusion, what follows is the salient text from both that illuminates the difference between the two.

From the scope of ISO 10012:

“It specifies the quality management requirements of a measurement management system that can be used by an organization performing measurements as part of the overall management system, and to ensure metrological requirements are met.”

From scope of ISO 17025:

“This International Standard is for use by laboratories in developing their management system for quality, administrative and technical operations.”

ISO 10012 focuses on the requirements of the measurement management system. You can consider it a system within the quality management system. It defines requirements relevant to the measurement management system in language that may illustrate interrelations to other parts of an overall quality management system.

ISO 10012 is a guidance document and not intended for certification. An organization, for example, could have a quality management systems that is certified to ISO 9001:2008. Even if the organization chooses to adhere to the requirements of ISO 10012, the certification to ISO 9001 does not imply certification to the requirements of ISO 10012.

ISO 17025 describes the requirements for a quality management system that can be accredited (a process comparable but different from certification). It encompasses all aspects of the laboratory.

The competence referred to in the title of the standard relates to the competence of the entire system – not just training of personnel. It addresses such factors as contracts with customers, purchasing, internal auditing, and management review of the entire quality management system – ISO 10012 does not.

In summary, ISO 10012 is a guidance document that addresses one element (namely management of a measurement system) of a quality management system. ISO 17025 defines requirements for entire quality management system that can be accredited.

Denise Robitaille
Vice Chair, U.S. TAG to ISO/TC 176 on Quality Management and Assurance
SC3 Expert – Supporting Technologies

Related Content:

Expert Answers: Metrology Program 101, Quality Progress

Question and answer related to defining an organization’s metrology program. Read more. 

Measure for Measure: Managing the Measurement System, Quality Progress

Discussion related to the importance and timing of equipment calibration. Read more. 

10 Quality Basics, Quality Progress

Correctly applied measurement, wherever and however it occurs, is an essential element of a successful business QMS. Read more.

Standards Column: Using the Whole ISO 9000 Family of Quality Management System Standards, Quality Engineering

There is a great deal of richness in the ISO 9000 family of documents and it is a shame for users to not know about and take advantage of the full range of possibilities. Read more.

Ask A Librarian